Package index
-
ALE() - Accumulated Local Effect Plot (ALE)
-
PDP() - Partial Dependence Plot (PDP)
-
analyze_training() - Visualize training of Neural Network
-
avgPool() - This function creates an
avgPoollayer object of classcitolayerfor use in constructing a Convolutional Neural Network (CNN) architecture. The resulting layer object can be passed to thecreate_architecturefunction to define the structure of the network.
-
citocito-package - 'cito': Building and training neural networks
-
cnn() - Train a Convolutional Neural Network (CNN)
-
coef(<citocnn>) - Retrieve parameters of a fitted CNN model
-
coef(<citodnn>)coef(<citodnnBootstrap>) - Returns list of parameters the neural network model currently has in use
-
conditionalEffects() - Calculate average conditional effects
-
config_lr_scheduler() - Creation of customized learning rate scheduler objects
-
config_optimizer() - Creation of customized optimizer objects
-
config_tuning() - Config hyperparameter tuning
-
continue_training() - Continues training of a model generated with
dnnorcnnfor additional epochs.
-
conv() - Create a Convolutional Layer for a CNN Architecture
-
create_architecture() - Create a CNN Architecture
-
dnn() - DNN
-
e() - Embeddings
-
findReTrmClasses() - list of specials – taken from enum.R
-
linear() - Create a Linear Layer for a CNN Architecture
-
maxPool() - Create a Maximum Pooling Layer for a CNN Architecture
-
mmn() - Train and evaluate a Multi-Modal Neural Network (MMN) model
-
multinomial_log_prob() - Multinomial log likelihood
-
plot(<citoarchitecture>) - Plot method for citoarchitecture objects
-
plot(<citocnn>) - Plot a fitted CNN model
-
plot(<citodnn>)plot(<citodnnBootstrap>) - Creates graph plot which gives an overview of the network architecture.
-
predict(<citocnn>) - Predict with a fitted CNN model
-
predict(<citodnn>)predict(<citodnnBootstrap>) - Predict from a fitted dnn model
-
predict(<citommn>) - Predict from a fitted mmn model
-
print(<citoarchitecture>) - Print method for citoarchitecture objects
-
print(<citocnn>) - Print a fitted CNN model
-
print(<citodnn>)print(<citodnnBootstrap>) - Print class citodnn
-
print(<citommn>) - Print class citommn
-
print(<conditionalEffects>)print(<conditionalEffectsBootstrap>) - Print average conditional effects
-
print(<summary.citodnn>)print(<summary.citodnnBootstrap>) - Print method for class summary.citodnn
-
residuals(<citodnn>) - Extract Model Residuals
-
simulate_shapes() - Data Simulation for CNN
-
sumTerms() - combine a list of formula terms as a sum
-
summary(<citocnn>) - Summarize a fitted CNN model
-
summary(<citodnn>)summary(<citodnnBootstrap>) - Summarize Neural Network of class citodnn
-
summary(<citommn>) - Summary citommn
-
transfer() - Include a Pretrained Model in a CNN Architecture
-
tune() - Tune hyperparameter