This function prints the architecture of a Convolutional Neural Network (CNN) model created using the cnn
function.
Usage
# S3 method for class 'citocnn'
print(x, ...)
Arguments
- x
A model created by
cnn
.- ...
Additional arguments (currently not used).
Examples
# \donttest{
if(torch::torch_is_installed()){
library(cito)
set.seed(222)
device <- ifelse(torch::cuda_is_available(), "cuda", "cpu")
## Data
shapes <- cito:::simulate_shapes(320, 28)
X <- shapes$data
Y <- shapes$labels
## Architecture
architecture <- create_architecture(conv(5), maxPool(), conv(5), maxPool(), linear(10))
## Build and train network
cnn.fit <- cnn(X, Y, architecture, loss = "softmax", epochs = 50, validation = 0.1, lr = 0.05, device=device)
# Structure of Neural Network
print(cnn.fit)
}
#> Error in match.arg(tolower(optimizer), choices = c("sgd", "adam", "adadelta", "adagrad", "rmsprop", "rprop", "ignite_adam")): 'arg' must be of length 1
# }